
ASYMMETRIC TANDEM ADDITIONS TO CHIRAL 2-NAPHTHYLOXAZOLINES.

THE SYNTHESIS OF ENANTIOMERICALLY PURE 1,2,2-TRISUBSTITUTED-1,2-DIHYDRONAPHTHALENES

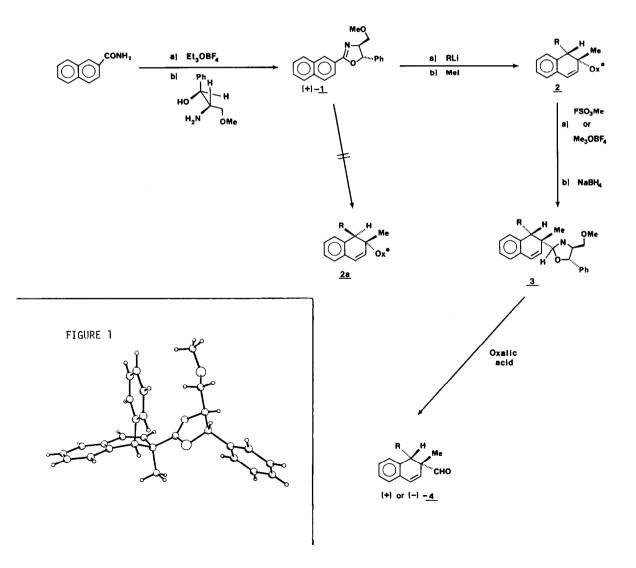
A. I. Meyers and Denton Hoyer Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523

Summary: Addition of organolithium reagents to optically active 2-naphthyloxazolines followed by trapping with methyl iodide gives, after oxazoline removal, the titled compounds whose absolute configuration was determined by x-ray diffraction.

We recently described the efficient addition of organolithium reagents to naphthalene containing the chiral oxazoline, (+)-<u>A</u> followed by electrophilic trapping¹. The diastereomeric ratios of <u>B</u> (8.5-9.5:1) were found to contain only <u>trans</u> tandem addition products, which were easily purified by chromatography. A three step, efficient process was used to

remove the chiral auxiliary furnishing the enantiomerically pure aldehydes $(+)-\underline{C}$. Thus, two chiral elements were introduced into the naphthalene ring in a single step $(\underline{A} + \underline{B})$. It soon became apparent that for some projected natural product syntheses, this tandem alkylation had to show similar stereoselectivity in the 2-naphthyl system <u>1</u>. The possibility also arose that regiochemical selectivity (to either adjacent 1- or 3-positions) may also pose problems for this route to substituted dihydronaphthalenes². We now describe our results with the 2-naphthyloxazoline, $(+)-\underline{1}$, which demonstrate that the tandem additions proceed with both a high degree of stereo- and regioselectivity (Table).

Addition of organolithium reagents to $(+)-\underline{1}$, under conditions depicted in the Table, followed by trapping of the intermediate lithioazaenolate with methyl iodide³ gave the


dialkylated dihydronaphthalene $\underline{2}$ in good yields with generally high diastereoselectivity. The process is also devoid of any <u>cis</u>-addition products, $\underline{2a}$, with the only impurity being that derived from diastereofacial entry of the organolithium. Thus, entry of RLi from the bottom (<u>re</u>-face) of the naphthalene ring generates the major isomer, while the minor isomer results from RLi entry from the topside (si-face). Confirmation of the absolute stereochemistry of the major product ($\underline{2}$) was obtained by a single crystal x-ray study on $\underline{2}$ (R=Ph, mp 133-134°). The ORTEP structure (Fig. 1) clearly shows the IS, 2S configuration for the phenyl and methyl respectively⁴. Thus, the same sense of asymmetric addition to the naphthalene occurs in the 2-naphthalene system, as was observed for the 1-naphthalenes¹. Furthermore <u>no</u> detectable products were found resulting from addition to <u>1</u> in the 3-position. Another interesting aspect of the process is the lack of sensitivity to the temperature of the organolithium addition. Thus the ratio of diastereomers in <u>2</u> were only slightly changed (Table) whether the addition was carried out at -78° or 25°. Similarly, the ratios were unaffected in the presence of HMPA as a cosolvent.

RLi	Equiv.	T°,time ^a	% yield ^b	Diast. Ratio ^b <u>2</u>	Aldehydes, <u>4</u>	
					% yield ^C (from 2)	[a] _D CHC1 ₃ (c) ^d
<u>n</u> -Bu	1.1	-78°, 2h	85	98:2	81	+190.8°(1.0)
<u>n</u> -Bu	1.1	25°, 5 min	70	92: 8		
<u>n</u> -Bu	1.1	-78°(HMPA),2h	92	98:2		
Me	2.0	-30°, 15h	67	91:9	65	-85.8° (0.5)
Ph	2.0	-30°, 5h	89	90:10	89	-333.6°(0.5)
<u>t</u> -Bu	2.0	-100°, 1.5h	74	76:27	70	+244.4°(0.7)

TABLE Addition to 1 and Cleavage to Enantiomerically Pure Aldehydes 4

a) Conditions for addition of organolithiums, methyl iodide added in all cases at -78°.
b) Yields are for isolated mixture of diastereomers of <u>2</u> and diastereomeric ratios determined by HPLC (Sorbax, 20% THF-Hexane, 1 ml/min). c) The minor diastereomer in <u>2</u> was removed by radial chromatography (20% ethyl acetate-hexane, silica gel) prior to oxazoline removal. HPLC and 270 MHz NMR confirmed homogeneity of <u>2</u>. Yields of homogeneous product.
d) Rotations for pure homogeneous product.

The minor diastereomer in $\underline{2}$ was readily removed by chromatography furnishing the diastereomerically pure (HPLC, CMR) materials. Cleavage to the enantiomerically pure aldehydes $\underline{4}$ was performed by two related methods. Originally, the quaternization of the oxazoline nitrogen was accomplished using methyl fluorosulfonate ("magic methyl," 3.5 equiv, CH_2Cl_2 , 25°, 15 h) followed by direct addition of NaBH₄ (4 equiv in MeOH-THF, 0°) which reduced the iminium linkage to $\underline{3}$ in 5 min (mixture of diastereomers). The mixture was diluted with water, CH_2Cl_2 added, and the layer separated, washed with water, and concentrated. The residue of crude $\underline{3}$ was stirred in THF-water with excess oxalic acid (3h, 25°) affording pure $\underline{4}$ after radial chromatography. After this cleavage was accomplished, the future unavailability

of "magic methyl"⁵ caused us to develop an alternative method using $Me_{3}OBF_{4}^{6}$ in its place. It was found that $Me_{3}OBF_{4}$ (2.0 equiv, $CH_{2}Cl_{2}$, 8h) completely quaternizes <u>2</u> and reduction with sodium borohydride and hydrolysis (as above) gave comparable yields of the aldehyde, <u>4</u>.

This facile and efficient route to chiral dihydronaphthalenes now opens the way to a number of naturally occurring and biologically important substances whose synthesis is in progress.

REFERENCES AND NOTES

- 1. B. A. Barner and A. I. Meyers, J. Am. Chem. Soc. 106, 1865 (1984)
- Prepared by treating 2-naphthamide with 1.2 equiv Et₃OBF₄ in 1,2-dichloroethane (25°, 24h) then addition of 1.2 equiv S,S-methoxyamino alcohol according to previously described procedure (cf. ref. 1). (+)-1 was obtained in 68% yield, [α]_D 124.3° (c 2.8, CHCl₃). Additions to the 3-position would appear unlikely due to the destruction of the aromaticity in both rings of the naphthalene nucleus.
- 3. In addition to methyl iodide, other electrophiles such as PhSSPh, $ClCO_2Me$, H⁺ also provide products with high trans ratios and comparable diastereofacial efficiency.
- 4. The absolute configuration of the chiral oxazoline <u>1</u> has been shown to be 4S, 5S at the methoxymethyl and phenyl group respectively; see: A. I. Meyers, M. A. Hanagan, L. M. Trefonas, R. J. Baker, Tetrahedron 39, 1991 (1983), and earlier references therein.
- Health restrictions placed on "magic methyl" have caused suppliers to cease sales of this reagent as of October 1983.
- 6. Alfa; Org. Syn. <u>Coll. Vol. 5</u>, 1096. Attempts to use Et_3OBF_4 failed to give the N-ethyl quaternary salt of 2.

ACKNOWLEDGMENT

The authors are grateful to the National Institutes of Health for generous financial support.

(Received in USA 1 May 1984)